Prof. Yunyoung Nam -Biomedical Engineering – Best Researcher Award

Prof. Yunyoung Nam -Biomedical Engineering - Best Researcher Award

Soonchunhyang University - South Korea

Author Profile

SCOPUS
ORCID

Summary

Yunyoung Nam is a distinguished professor in the department of computer science and engineering at soonchunhyang university, with a diverse academic and professional background. his early academic excellence, recognized by multiple presidential awards and fellowships, laid a strong foundation for his future endeavors. through teaching roles and research positions in both south korea and the united states, he has cultivated expertise in multimedia information retrieval, machine learning, and computer vision.

Early academic pursuits

Yunyoung nam began his academic journey with a strong foundation in computer science, earning accolades such as the presidential award for excellence twice during his graduate studies at the graduate school of information and communication. supported by the dasan fellowship in 2000 at ajou university, he built an early interest in programming, databases, and data processing. between 2001 and 2003, he served as a teaching assistant, refining both technical and instructional Biomedical Engineering skills in foundational computing subjects such as c programming and databases. his formative years in academia prepared him for interdisciplinary applications, including power electronics, embedded systems, and multimedia systems.

Professional endeavors

His professional trajectory spans prestigious institutions in south korea and the united states. after earning his phd, he held roles including postdoctoral researcher at stony brook university and research assistant professor at ajou university. dr. nam furthered his global research outlook as a postdoctoral fellow at worcester polytechnic institute. since 2014, he has been a key academic figure at soonchunhyang university, serving successively as assistant, associate, and Biomedical Engineering now full professor. throughout his academic appointments, he has also taught a wide array of technical subjects including deep learning, software engineering, and artificial intelligence, while maintaining active involvement in power electronics applications within smart home and biomedical systems.

Contributions and research focus

Yunyoung Nam's research spans diverse domains, emphasizing multimedia information retrieval, digital image processing, computer vision, and biomedical engineering. his work delves into machine learning, behavior recognition, and human-computer interaction—topics critical to pervasive computing and surveillance systems. one notable strength is his application of evolutionary algorithms to multimedia and 3d visualization problems. his research also explores power electronics in the context of biomedical devices and smart environments, bringing interdisciplinary innovation to the forefront.

Impact and influence

Professor Nam's impact is evident through several prestigious honors, including multiple presidential awards for best researcher at soonchunhyang university. his inclusion in the stanford/elsevier’s top 2% scientist rankings underscores the global recognition of his scholarly excellence. his long-standing memberships with ieee, mdpi, and other peer-reviewed journals reflect his ongoing contributions to Biomedical Engineering academic communities across computer science and engineering.

Academic citations

With a solid presence in high-impact journals such as multimedia tools and applications, security and communication networks, and ksii transactions on internet and information systems, Yunyoung Nam’s work continues to receive significant academic citations. his role as editor and reviewer across leading publications demonstrates his influence in shaping future research, especially in Biomedical Engineering ,multimedia content analysis, deep learning, and system-level integrations relevant to power electronics and biomedical technologies.

Legacy and future contributions

As a dedicated educator and researcher, Dr. Nam has mentored countless students and junior researchers. his sustained teaching in core computer science areas and advanced topics like ai and deep learning reflect a commitment to nurturing the next generation of engineers and scientists. moving forward, he is poised to deepen his research in smart systems, pervasive Biomedical Engineering computing, and power electronics-driven biomedical devices, reinforcing his legacy in both academia and industry.

Notable Publications

Title: A Novel Approach for High-Resolution Coastal Areas and Land Use Recognition From Remote Sensing Images Based on Multimodal Network-Level Fusion of SRAN3 and Lightweight Four Encoders ViT
Authors: Muhammad Kashif Bhatti, Muhammad Attique Khan, Saima Shaheen, Ameer Hamza, Ali Arishi, Dina Abdulaziz AlHammadi, Shabbab Ali Algamdi, Yunyoung Nam
Journal: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

Title: Analysis of Near-Fall Detection Method Utilizing Dynamic Motion Images and Transfer Learning
Authors: Jung-Yeon Kim, Nab Mat, Chomyong Kim, Awais Khan, Hyo-Wook Gil, Jiwon Lyu, Euyhyun Chung, Kwang Seock Kim, Seob Jeon, Yunyoung Nam
Journal: IEEE Access

Title: Energy-Efficient Discrete Cosine Transform Architecture Using Reversible Logic for IoT-Enabled Consumer Electronics
Authors: Muhammad Awais, Wilayat Khan, Tallha Akram, Yunyoung Nam
Journal: IEEE Access

Title: Cooperative PPG/ECG Wearable System for Atrial Fibrillation Diagnosis
Authors: Yongbin Lee, Soyoung Lee, Sang Kyu Kim, Dong Keon Yon, Yunyoung Nam, Jinseok Lee
Journal: IEEE Sensors Journal

Title: A Deep Learning Approach for Automated Depression Assessment Using Roman Urdu
Authors: Ruba Mohmand, Usman Habib, Muhammad Usman, Jamel Baili, Yunyoung Nam
Journal: IEEE Access

Conclusion

Dr. Yunyoung Nam’s academic journey reflects a lifelong dedication to education, innovation, and interdisciplinary research. his work not only advances core areas in computer science but also extends into real-world applications, particularly in smart environments and power electronics. through his impactful teaching, recognized awards, and international research collaborations, he continues to influence both academic and technological landscapes, setting the stage for future innovations in multimedia systems and intelligent computing.

Xiaolian Sun | Biomedical Engineering | Best Researcher Award

Prof. Xiaolian Sun | Biomedical Engineering | Best Researcher Award

China Pharmaceutical University, China

Dr. Xiaolian Sun is a distinguished professor and researcher in the field of nanomedicine, radiolabeled nanomaterials, and molecular imaging. Currently based at the State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Dr. Sun has built a prolific career that bridges fundamental chemistry with translational biomedical applications. She earned her Ph.D. in Chemistry from Brown University in 2012 and completed her undergraduate studies at Nanjing University in 2008. With extensive research experience in magnetic nanomaterials and cancer theranostics, she has authored more than 60 peer-reviewed publications, accruing over 2,000 citations and achieving an H-index of 22. Her work is characterized by innovation in designing multifunctional nanoplatforms for synergistic imaging and therapeutic strategies, particularly in oncology. Dr. Sun’s contributions extend beyond academic research through her leadership roles at top institutions, including Xiamen University and China Pharmaceutical University. Her interdisciplinary expertise spans chemistry, nanotechnology, radiology, and biomedical engineering. She has also secured multiple national-level research grants and continues to play a vital role in advancing precision medicine. As a mentor, she actively supports young scientists and graduate students, fostering a collaborative research environment. Dr. Sun remains a pioneering force in the integration of nanotechnology with modern medicine.

Professional Profiles

Education

Dr. Xiaolian Sun has pursued a rigorous academic path that laid the groundwork for her interdisciplinary research in nanomedicine and molecular imaging. She earned her Ph.D. in Chemistry from Brown University in 2012, where she was immersed in an intellectually vibrant environment that emphasized fundamental research in materials chemistry and its biomedical applications. Her doctoral work focused on designing and characterizing nanomaterials, with an emphasis on their potential in catalysis, imaging, and therapy. During her time at Brown, she developed strong analytical, synthetic, and problem-solving skills that would serve as the foundation for her future innovations. Prior to her Ph.D., Dr. Sun completed her Bachelor of Science in Chemistry at Nanjing University in 2008, one of China’s most prestigious institutions. There, she developed her initial interest in nanomaterials and their role in biomedical sciences, gaining critical lab experience and a deep understanding of core chemical principles. Both educational experiences helped shape her cross-disciplinary expertise, preparing her to integrate chemical sciences with bioengineering and medical imaging. This combination of Eastern and Western academic training provided Dr. Sun with a unique global perspective, enriching her approach to research and collaboration. Her educational background continues to inform her leadership in advanced biomedical technologies.

Professional Experience

Dr. Xiaolian Sun’s professional journey is marked by excellence and leadership in both academic and research environments. Since November 2017, she has served as a Professor at the School of Pharmacy, China Pharmaceutical University, where she is affiliated with the State Key Laboratory of Natural Medicines. In this role, she leads multiple research initiatives focused on nanomedicine and molecular imaging, mentoring graduate students and postdoctoral fellows while securing competitive research funding. Prior to her current position, Dr. Sun was a Professor at the Center for Molecular Imaging and Translational Medicine at Xiamen University from August 2015 to November 2017. There, she expanded her research on radiolabeled nanoparticles and multifunctional imaging agents, making significant contributions to the development of novel cancer theranostics. Her postdoctoral training took place at the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), under the Intramural Research Training Award program from September 2012 to August 2015. At NIH, she worked on cutting-edge projects involving radiolabeled inorganic nanomaterials for diagnostic and therapeutic applications. Across all positions, Dr. Sun has demonstrated a consistent commitment to research excellence, interdisciplinary collaboration, and innovation, contributing significantly to the fields of nanotechnology, bioimaging, and cancer treatment.

Research Interest

Dr. Xiaolian Sun’s research interests lie at the forefront of nanomedicine, with a particular focus on magnetic and radiolabeled nanomaterials for diagnostic and therapeutic applications. Her work explores the intersection of materials chemistry, biomedical imaging, and targeted cancer therapy, aiming to develop novel multifunctional nanoparticles that respond to tumor microenvironments. A central theme in her research is the design of magnetic nanoplatforms and radiopharmaceuticals that can simultaneously deliver therapy and enhance imaging capabilities, thereby enabling more precise and effective treatment strategies. She has extensively studied X-ray and radiation-triggered nanostructures, PROTAC-based therapeutics, and self-assembling nanomedicines that modulate immune responses in tumor tissues. Dr. Sun is particularly interested in using metal-based nanomaterials such as FeAu, Fe/Fe₃O₄, and iodine-labeled structures to activate ferroptosis, pyroptosis, and photodynamic mechanisms. Her work also involves investigating radiation-responsive and near-infrared (NIR-II) technologies to overcome tumor hypoxia and improve treatment efficacy. By integrating chemistry with immunotherapy, her research addresses key challenges in current cancer treatments. Through collaborations with interdisciplinary teams, she continues to expand her research into clinical translation, seeking to develop next-generation nanoplatforms that support imaging-guided, personalized cancer therapies. Her interests reflect a deep commitment to solving real-world problems through advanced material science and biomedical engineering.

Research Skills

Dr. Xiaolian Sun possesses a comprehensive set of research skills that bridge chemistry, nanotechnology, and biomedical imaging. Her expertise includes the synthesis and functionalization of magnetic nanomaterials, radiolabeled nanoparticles, and hybrid nanostructures for applications in cancer theranostics. She is highly proficient in advanced nanomaterial fabrication techniques, including core-shell assembly, metal alloy nanoparticle synthesis, and redox-responsive nanostructure design. Dr. Sun has extensive experience in radiolabeling, particularly with isotopes such as ¹³¹I, ⁶⁴Cu, and ⁸⁹Zr, enabling her to develop nanoplatforms suitable for SPECT, PET, and multimodal imaging. Her technical skills extend to photodynamic and photothermal therapy applications, using Cerenkov luminescence, persistent luminescence, and X-ray-triggered responses for tumor-specific treatments. She is adept in utilizing in vitro and in vivo models to evaluate nanoparticle biodistribution, therapeutic efficacy, and immunomodulation effects. Dr. Sun is also skilled in the use of imaging modalities such as MRI, PET/CT, fluorescence imaging, and NIR-II imaging for preclinical validation. Additionally, she has strong command over data analysis software, materials characterization tools (TEM, SEM, XRD), and bioconjugation chemistry. Her ability to integrate these diverse skills enables her to innovate across disciplines, pushing the boundaries of nanomedicine for precision diagnostics and therapy.

Awards and Honors

Dr. Xiaolian Sun has received numerous awards and honors in recognition of her groundbreaking research in nanomedicine and molecular imaging. Among her most notable achievements are multiple grants from the National Natural Science Foundation of China, including the prestigious project on porous yolk-shell Fe/Fe₃O₄ nanoparticles for MRI-guided cancer therapy (2019–2023). She also led research on copper-gold/iron oxide nanostructures for imaging-guided photothermal therapy (2016–2018), and participated in key national initiatives such as the tumor microenvironment-responsive magnetic nanovesicles project under China’s National Key Research and Development Program (2016–2020). These grants underscore the scientific merit and societal impact of her research. In addition to funding recognition, Dr. Sun’s scholarly excellence is reflected in her publication record, including articles in top-tier journals such as Angewandte Chemie, JACS, Advanced Functional Materials, and Biomaterials. Her works have garnered international attention and substantial citations, contributing to her growing influence in the scientific community. Furthermore, she has been invited to speak at global conferences and serves as a peer reviewer for multiple high-impact journals. These accolades not only highlight her research leadership but also affirm her role as a pioneer in the development of smart nanoplatforms for cancer therapy and biomedical imaging.

Conclusion

Dr. Xiaolian Sun’s career embodies a rare blend of scientific rigor, innovative thinking, and interdisciplinary collaboration. From her early academic training at Nanjing University and Brown University to her advanced research at NIH and professorships at Xiamen and China Pharmaceutical University, she has consistently demonstrated excellence in nanomedicine and molecular imaging. Her pioneering research on radiolabeled and magnetic nanomaterials has significantly contributed to the evolution of cancer theranostics, offering new avenues for noninvasive diagnosis and targeted treatment. Her 60+ publications, influential H-index, and sustained research funding reflect a profound and lasting impact on her field. As a mentor and academic leader, Dr. Sun fosters an inclusive and forward-thinking research environment that nurtures the next generation of scientists. Her commitment to translational science bridges the gap between laboratory research and clinical application, underscoring the real-world significance of her work. Through continuous innovation in material design, radiopharmaceuticals, and smart nanotherapeutics, Dr. Sun remains at the cutting edge of precision medicine. Looking ahead, she is poised to further her contributions to global health by advancing personalized, image-guided therapies that respond dynamically to tumor biology. Her scientific vision and leadership ensure that she will continue to be a transformative figure in biomedical research.

 Publications Top Notes

  1. Title: A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression

    • Authors: Q. Wang, K. Feng, G. Wan, W. Wang, Q. Jiang

    • Year: 2025

    • Citations: 1

  2. Title: Hydrogen sulfide-responsive and depleting NIR-II nanoplatform synergistic photodynamic therapy for colorectal cancer

    • Authors: Y. Chai, M. Xu, Y. Sun, Y. Pan, Y. Liu

    • Year: 2025

  3. Title: Responsive and traceless assembly of iron nanoparticles and 131I labeled radiopharmaceuticals for ferroptosis enhanced radio-immunotherapy

    • Authors: J. Shen, K. Feng, J. Yu, T. Zhang, X. Sun

    • Year: 2025

    • Citations: 3

  4. Title: X-ray triggered bimetallic nanoassemblies as radiosensitizers and STING agonists for a CDT/radio-immunotherapy strategy

    • Authors: R. Chen, J. Gong, Z. Yu, S. Wang, X. Sun

    • Year: 2025

  5. Title: Self-Assembled Triple-Targeted Radiosensitizer Enhances Hypoxic Tumor Targeting and Radio-Immunotherapy Efficacy

    • Authors: Y. Tian, L. Wang, R. Chen, Y. Zhang, D. Ye

    • Year: 2025

  6. Title: FeAu Bimetallic Nanoparticle as Fe(0) Reservoir for Near Infrared Laser Enhanced Ferroptosis/Pyroptosis-Based Tumor Immunotherapy

    • Authors: Y. Ruan, X. Wu, K. Li, S. Sun, X. Sun

    • Year: 2024

    • Citations: 5

  7. Title: 131I Induced In Vivo Proteolysis by Photoswitchable azoPROTAC Reinforces Internal Radiotherapy

    • Authors: H. Liu, H. Xiong, C. Li, D. Su, X. Sun

    • Year: 2024

  8. Title: A multi-modality imaging strategy to determine the multiple in vivo fates of human umbilical cord mesenchymal stem cells at different periods of acute liver injury treatment

    • Authors: N. Wei, X. Chen, D. Liu, X. Sun, J. Zhang

    • Year: 2024

  9. Title: Copper-based catalysts for carbon monoxide electroreduction to multicarbon products

    • Authors: W. Zhao, J. Liu, G. Wang, G. Zuo, W. Zhu

    • Year: (unspecified but likely 2024/2025)

    • Citations: 4

  10. Title: Self-Illuminating In Situ Hydrogel with Immune-Adjuvant Amplify Cerenkov Radiation-Induced Photodynamic Therapy

    • Authors: X. Zhang, J. Guo, Z. Zhou, L. Tang, X. Sun

    • Year: 2024

    • Citations: 3