Mrs. Jinging Wu | Organic Chemistry | Best Researcher Award
Associate Professor at Shanghai Institute of Technology, China
Dr. Jingjing Wu is an accomplished Associate Professor at the Shanghai Institute of Technology, with a research portfolio that demonstrates deep expertise in organic fluorine chemistry and green pharmaceutical synthesis. With a strong foundation in designing small-molecule fluorinated drugs and developing eco-friendly methods for synthesizing pharmaceutical intermediates, Dr. Wu has significantly advanced the field of medicinal chemistry. Her innovative work emphasizes sustainable practices, making notable strides in the development of difluoroalkylated building blocks and environmentally conscious alkylation techniques. Having completed or managed 10 research projects and contributed to over 51 peer-reviewed publications indexed in SCI and Scopus, she has become a recognized name in her domain. Dr. Wu also holds 23 patents, underscoring her commitment to translational research and industrial relevance. Her active collaboration with peers, notably with researcher Fanhong Wu, enriches her multidisciplinary approach to chemical innovation. A member of the Chinese Chemical Society, Dr. Wu is dedicated to the advancement of science through both research and mentorship. Her research has garnered 22 citations and supported five consultancy projects with industry partners. She continues to push the boundaries of organic chemistry with a focus on societal impact, environmental responsibility, and scientific rigor.
Professional Profiles
Education
Dr. Jingjing Wu’s academic journey reflects her longstanding dedication to chemical research and innovation. She pursued higher education in chemistry, specializing in organic synthesis with an emphasis on fluorinated compounds, which laid the groundwork for her current focus on pharmaceutical applications. Though specific degree details are not provided, her extensive knowledge and the depth of her current work as an Associate Professor at the Shanghai Institute of Technology speak volumes about the quality of her educational background. She likely received rigorous training in both theoretical and practical aspects of organic chemistry, allowing her to master the intricacies of reaction mechanisms and modern synthetic methods. Her academic path would have included specialized coursework and hands-on research in fluorine chemistry, medicinal chemistry, and green chemical technologies. This academic grounding has been instrumental in enabling her to train students, lead complex research projects, and develop new methodologies in drug synthesis. Dr. Wu’s commitment to continuous learning is also evident in her evolving research scope, which now encompasses green synthesis routes and the industrial scalability of pharmaceutical intermediates. Her educational foundation continues to support her role as a scientific innovator and educator in the competitive field of medicinal and organic chemistry.
Professional Experience
As an Associate Professor at the Shanghai Institute of Technology, Dr. Jingjing Wu brings a wealth of experience in teaching, research, and scientific development. Over the years, she has skillfully balanced her roles as a researcher and educator, contributing extensively to the advancement of organic chemistry, especially in the context of pharmaceutical synthesis. She has led 10 research projects and collaborated on numerous others, consistently pushing the boundaries of small-molecule fluorinated drug design. Her academic leadership includes mentoring students, developing curriculum content focused on green and sustainable chemistry, and fostering interdisciplinary research. Dr. Wu has also been actively involved in consultancy roles, contributing her expertise to five industry-focused projects. Her close collaboration with researcher Fanhong Wu has helped bridge the gap between academic research and practical applications, especially in drug development pipelines. Dr. Wu’s patent portfolio—23 strong—reflects the translational nature of her work and its potential for industrial impact. Despite the absence of published books, her 51 publications in indexed journals stand as a testament to her research productivity and thought leadership. Her professional engagements continue to reflect her deep commitment to chemical innovation, sustainability, and academic excellence.
Research Interest
Dr. Jingjing Wu’s research interests lie at the intersection of organic chemistry, medicinal chemistry, and sustainable chemical synthesis. She is particularly focused on the development of small-molecule fluorinated drugs and novel methodologies that contribute to the green synthesis of pharmaceutical intermediates and active pharmaceutical ingredients (APIs). Her work delves into the complex chemistry of fluorine—a challenging yet rewarding element in organic synthesis due to its unique electronic and steric properties. One of her key innovations includes the design and synthesis of difluoroalkylated building blocks, particularly iodofluorinated ketones, which serve as versatile intermediates in drug discovery. Dr. Wu is deeply invested in the methodological development of eco-friendly alkylation reactions that utilize these fluorinated scaffolds to construct structurally diverse and pharmacologically relevant compounds. Her research not only advances the understanding of fluorine’s role in medicinal chemistry but also aligns with global goals of reducing the environmental footprint of pharmaceutical manufacturing. This dual emphasis on functionality and sustainability places her work at the forefront of modern synthetic chemistry. Collaborations with researchers like Fanhong Wu further support her interdisciplinary approach and commitment to real-world applications. Dr. Wu’s research continues to inspire novel directions in both academic and industrial settings.
Research Skills
Dr. Jingjing Wu possesses a comprehensive skill set in organic synthesis, particularly in the domain of fluorinated drug discovery and green chemistry. Her expertise includes advanced techniques in reaction optimization, synthesis of complex small molecules, and the development of novel chemical methodologies. She has demonstrated high proficiency in designing and executing fluorination strategies using environmentally benign reagents, which is a critical capability in pharmaceutical development. One of her standout skills lies in the construction of difluoroalkylated compounds using iodofluorinated ketones—a process that requires nuanced control over reactivity and selectivity. She is also adept at performing structure-activity relationship (SAR) studies, a fundamental component of medicinal chemistry that guides drug optimization. With hands-on experience managing research projects and industry collaborations, she excels in both academic and applied chemical research. Additionally, Dr. Wu is skilled in interpreting NMR, IR, and mass spectrometry data for compound characterization, ensuring the validity and reproducibility of her synthetic work. Her ability to balance innovation with green chemistry principles makes her a valuable contributor to sustainable pharmaceutical science. Through mentoring and collaborative research, she continues to pass these technical competencies on to the next generation of chemists.
Awards and Honors
While specific awards are not listed, Dr. Jingjing Wu’s substantial contributions to the field of organic chemistry strongly position her for accolades such as the Best Researcher Award. Her impressive record—comprising 51 published papers, 23 patents, and leadership in 10 research projects—reflects a career driven by scientific innovation and excellence. Her work in fluorinated compound synthesis and green pharmaceutical processes has addressed critical challenges in drug development and environmental sustainability, earning her the respect of peers in both academic and industrial circles. Her research impact, though still emerging with 22 citations, is amplified by her unique focus on difluoroalkylated building blocks and her success in developing multiple green alkylation strategies. Dr. Wu’s consultancy work and industrial collaborations demonstrate the practical relevance of her innovations, a quality often recognized in high-level scientific awards. Additionally, her active role in the Chinese Chemical Society and collaboration with notable researchers like Fanhong Wu further signal her leadership in the chemical sciences community. Dr. Wu’s body of work reflects not just scholarly excellence but also a commitment to real-world impact, making her a strong candidate for current and future honors in scientific research.
Conclusion
Dr. Jingjing Wu exemplifies the qualities of a leading researcher, educator, and innovator in the field of organic and medicinal chemistry. Her career at the Shanghai Institute of Technology is marked by a strategic blend of academic rigor and real-world applicability. With a deep-rooted passion for the development of sustainable, fluorinated pharmaceutical compounds, she has contributed extensively to the advancement of green synthetic methodologies. Her 51 journal publications, 23 patents, and multiple research and consultancy projects highlight a robust professional portfolio that continues to grow in relevance and impact. Dr. Wu’s approach to research—combining originality with environmental consciousness—positions her at the forefront of contemporary chemical science. As an educator, she nurtures the next generation of scientists, ensuring that the principles of sustainability and innovation are passed on. Her collaborations, particularly with researcher Fanhong Wu, and her active participation in professional societies reinforce her commitment to community and knowledge sharing. With a strong foundation in research and a clear vision for the future, Dr. Wu remains dedicated to pushing the boundaries of chemistry to serve both industry and society. She is not only a valuable asset to her institution but also a rising figure in the global scientific community.
Publications Top Notes
-
Title: Novel Förster resonance energy transfer (FRET)-based ratiometric fluorescent probe for detection of cyanides by nucleophilic substitution of aromatic hydrogen (SNArH)
Authors: She, Qiunan; Cao, Yingmei; Zhou, Yicong; Wu, Jingjing; Liu, Chuanxiang
Year: 2025 -
Title: Green Light-Driven Organophosphine-Catalyzed Iododifluoroalkylation of Alkynes
Authors: Li, Yicong; Yu, Tianjing; Guo, Jinyu; Wu, Jingjing; Wu, Fanhong
Year: 2025 -
Title: Copper-Catalyzed Asymmetric Tertiary Radical Cyanation for the Synthesis of Chiral Tetrasubstituted Monofluoroacyl Nitriles
Authors: Liu, Li; Jiang, Qi; Tang, Long; Wu, Fanhong; Wu, Jingjing
Year: 2024 -
Title: 1,2-Oxidative Trifluoromethylation of Olefin with Ag(O₂CCF₂SO₂F) and O₂: Synthesis of α-Trifluoromethyl Ketones
Authors: Zhang, Shengxue; Xiao, Wangchuan; Wu, Jingjing; Shi, Yafei; Liu, Chao
Year: 2024 -
Title: A unique near-infrared fluorescent probe based on dual-DNP binding sites for rapid monitoring of hydrogen sulfide in food samples and living cells
Authors: Ma, Lili; Yang, Yinliang; Anwar, Gulziba; Wu, Jingjing; Liu, Chuanxiang
Year: 2024 -
Title: Copper(I) Iodide-Catalyzed Perfluoroalkoxylation Reaction of Alkyl Halides
Authors: Wu, Xiong; Le, Bingjun; Xiao, Wangchuan; Ma, Xiaoyu; Liu, Chao
Year: 2024
Citations: 1 -
Title: Visible Light-Induced Copper-Catalyzed Regio- and Stereoselective Difluoroalkylthiocyanation of Alkynes
Authors: Hu, Xiaoxue; Wang, Yanzhao; Xu, Shibo; Wu, Jingjing; Wu, Fanhong
Year: 2024
Citations: 3