Mrs. Chittepu Sireesha – Deep Learning – Best Researcher Award

Mrs. Chittepu Sireesha - Deep Learning - Best Researcher Award

SR University - India

Author Profile

SCOPUS

ORCID

Summary

Sireesha Chittepu is a seasoned academic with over 15 years of teaching experience in computer science and engineering. Her educational background includes a B.Tech and M.Tech in software and computer sciences, and she is currently pursuing a Ph.D. in Computer Science and Engineering at SR University. Throughout her career, she has demonstrated strong proficiency in subjects ranging from data structures to NLP and software testing. Notably, she has contributed significantly to institutional development through her roles as a coordinator for national-level hackathons, class mentor, and virtual lab leader in collaboration with IITH. Her research interest is expanding into areas that blend software innovation with applied domains such as power electronics, where she aims to enhance the interaction between software systems and hardware frameworks. She has also designed internal tools such as attendance and feedback systems to streamline academic administration.


Early academic pursuits

Sireesha Chittepu laid the foundation of her academic journey with a strong focus on the sciences, securing 85.6% in her Intermediate studies and 82% in her SSC. She pursued her B.Tech in Computer Science and Information Technology from Rajiv Gandhi Memorial College of Engineering and Technology under JNTU, achieving 70%. Further strengthening her expertise, deep learning she completed an M.Tech in Software Engineering from VNR Vignana Jyothi Engineering College, Hyderabad, with 78%. Currently, she is pursuing a Ph.D. in Computer Science and Engineering from SR University, Telangana, aligning her research with cutting-edge trends including power electronics, AI integration, and automation.

Professional endeavors

With over 15 years of teaching experience, Sireesha Chittepu has been a cornerstone in the academic development of countless students. Her journey began in 2003 and includes tenure at Alpha College of Engineering, Sree Nidhi Institute of Science and Technology, and Stanley College of Engineering and Technology for Women. Since 2015, deep learning she has been serving as an Assistant Professor at Vasavi College of Engineering, Hyderabad, demonstrating excellence in pedagogy and department-level coordination. Her professional engagements frequently intersect with power electronics, where she integrates software systems to improve learning tools and virtual lab environments.

Contributions and research focus

Sireesha’s teaching expertise spans a wide range of computer science subjects such as Compiler Construction, Data Structures, Software Engineering, and Natural Language Processing. She has developed and implemented innovative tools such as an attendance tracking system and a feedback management system, both of which enhance academic management deep learning. Her research focus aligns with emerging technologies and includes interdisciplinary studies where software engineering intersects with hardware systems like power electronics, emphasizing system-level integration and smart computing applications.

Impact and influence

In her role as Department Coordinator for Hackathons, Co-curricular and Extracurricular Activities, and SPOC for Smart India Hackathons (2019–2020), Sireesha has mentored students in national-level innovation challenges. Her coordination with institutions like IIT-Hyderabad for virtual labs reflects her impact on advancing academic infrastructure. She also contributes to curriculum development and exam preparation, influencing academic delivery deep learning across several institutions. These contributions indirectly support power electronics education by encouraging cross-domain thinking and system-oriented learning approaches among students.

Academic cites

While her Ph.D. is ongoing, Sireesha Chittepu's academic involvement includes preparing university-level question papers, developing lesson plans, and assessing student performance through structured evaluation methods. Though no formal citation index was mentioned, her continuous evaluation roles, seminar engagements deep learning, and project mentorships suggest a strong academic presence that is evolving towards publication and citation in future academic platforms.

Legacy and future contributions

Sireesha aims to bridge the gap between education and innovation, with a long-term vision of contributing to academia through research, digital tools, and cross-disciplinary teaching. Her future goals include publishing impactful research, particularly in the convergence of software engineering and power electronics, and mentoring future educators and deep learning researchers. As she continues her doctoral research, she is poised to leave a legacy defined by practical innovation, academic excellence, and a deep commitment to student-centric learning.

Notable Publications

  1. Title: Enhancing Medicinal Plant Prediction Through Deep Neural Network Algorithms
    Authors: Munigala Swapna, Sireesha Chittepu, Sanjana Gavada, Sreeja Barigela
    Publication: Communications in Computer and Information Science (CCIS) – Book Chapter
    Year: 2025
  2. Title: Improving Air Quality Prediction: A Study on Data-Driven Techniques and Advanced Sensing Technologies
    Authors: Yeshwanth Reddy, C. Sireesha
    Publication: Lecture Notes on Data Engineering and Communications Technologies – Book Chapter
    Year: 2025
  3. Title: Dynamic Conditional Encoding and Feature Frequency Parsing in Diffusion Probabilistic Models for Diabetic Foot Ulcer Detection Using Thermographic Imaging
    Authors: Kousar Nikhath A, Sireesha C, Swapna M, Vijayetha Thoday, Esther Rani D
    Publication: Journal of Biomedical Photonics & Engineering
    Date: 2025-03-31
  4. Title: A ResNet Based Plant Disease Diagnosis Platform
    Authors: Sireesha Chittepu, Suchith B, Deepthi M
    Publication: 2025 7th International Conference on Signal Processing, Computing and Control (ISPCC)
    Date: 2025-03-06
  5. Title: Enhancing the Surveillance, Assessment, and Tracking of Mental Health and Well-being Using Deep Learning Techniques
    Authors: Sireesha Chittepu, Sheshikala Martha
    Publication: 2025 7th International Conference on Signal Processing, Computing and Control (ISPCC)
    Date: 2025-03-06

Conclusion

Sireesha Chittepu's career reflects a commitment to academic excellence, hands-on innovation, and student empowerment. Her proactive involvement in research, curriculum design, and co-curricular coordination showcases her holistic approach to education. As she continues her Ph.D., her contributions are expected to deepen, particularly in interdisciplinary research areas including power electronics, where her experience in software systems can offer new insights. Looking ahead, Sireesha is well-positioned to influence future educational practices, mentor the next generation of engineers, and contribute meaningfully to research that connects computation with real-world systems.

Mr. Xinwei He – Object Detection – Best Researcher Award

Mr. Xinwei He - Object Detection - Best Researcher Award

Foshan University - China

Author Profile

GOOGLE SCHOLAR

Summary


Xinwei He, a second-year master’s student in software engineering at foshan university, is an emerging researcher in the field of object detection with a strong inclination toward real-world applications in power electronics and automation systems. his key contribution—tgcpn: two-level grid context propagation network for 3d small object detection—showcases a blend of academic depth and practical insight. through active participation in publication, code sharing, and peer-reviewed processes, xinwei is steadily building a credible academic presence. while early in his career, his focused research direction and commitment to quality reflect significant potential for future impact.

Early academic pursuits


Xinwei he is currently a second-year master's student in software engineering at foshan university. with a foundational understanding of computational models and a growing proficiency in research methodology, xinwei began contributing to the academic domain early in postgraduate studies. the integration of power Object Detection electronics principles with intelligent object recognition marked a turning point in xinwei's academic direction. xinwei is steadily building a credible academic presence. while early in his career, his focused research direction and commitment to quality reflect significant potential for future impact.

Professional endeavors


Though still in the academic phase, xinwei he has demonstrated professional maturity through the successful development of the project titled tgcpn: two-level grid context propagation network for 3d small object detection. this work highlights the Object Detection application of computer vision within high-efficiency environments, including power electronics-based automation systems. the project underscores a capacity to work at the intersection of deep learning and real-world utility.

Contributions and research focus


Xinwei’s primary area of research is object detection, with an emphasis on small-scale 3d object identification in complex environments. the recently completed paper revision and response to peer review comments demonstrates not only technical proficiency but also academic resilience. this effort contributes meaningfully to current advancements Object Detection in image detection technologies within power electronics and robotics-based systems.

Impact and influence


Xinwei he's ongoing work is gaining attention through platforms like github and springer. by leveraging code sharing and academic publication, Xinwei is establishing a transparent and collaborative research footprint. Object Detection although citation indices are in early stages, the methodological rigor and thematic relevance suggest promising growth in academic influence, particularly in the automation sector.

Academic cites


The project has been recognized in academic channels, with a publication under a reputable journal indexed by springer. while specific citation metrics are pending, xinwei's engagement with high-impact areas such as Object Detection power electronics-driven automation systems, signal propagation, and detection architecture indicates future relevance in citations and scholarly reference.

Legacy and future contributions


Xinwei he is poised to contribute further to the fields of object detection and robotics. future plans likely include expanding research collaborations, deepening the interface between object detection and applied power electronics, and increasing journal presence. with a strong ethical foundation as expressed in the self-declaration, xinwei seeks to build a legacy of integrity, innovation, and interdisciplinary growth.

Notable Publications

Title: Tgcpn: Two-level grid context propagation network for 3D small object detection
Authors: Y. Zhou, L. Pu, X. Xu, C. Yi, X. He, Y. Zhou, Y. Xu
Journal: Pattern Analysis and Applications

Conclusion


Xinwei He exemplifies the qualities of a dedicated and innovative researcher whose early contributions are already aligning with critical technological trends like automation and power electronics-driven systems. his consistent efforts in refining research output, responding to scholarly critique, and collaborating through open platforms position him well for long-term influence. with continued mentorship and engagement, xinwei is set to evolve into a valuable contributor to the global robotics and software engineering community.